19 research outputs found

    Компьютерное моделирование и визуализация системы защиты и управления водогрейным котлом

    Get PDF
    Large temperature gradients exacerbate various types of defects including early-life failures and delay faults. Efficient detection of these defects requires that burn-in and test for delay faults, respectively, are performed when temperature gradients with proper magnitudes are enforced on an Integrated Circuit (IC). This issue is much more important for 3-D stacked ICs (3-D SICs) compared with 2-D ICs because of the larger temperature gradients in 3-D SICs. In this paper, two methods to efficiently enforce the specified temperature gradients on the IC, for burn-in and delay-fault test, are proposed. The specified temperature gradients are enforced by applying high-power stimuli to the cores of the IC under test through the test access mechanism. Therefore, no external heating mechanism is required. The tests, high power stimuli, and cooling intervals are scheduled together based on temperature simulations so that the desired temperature gradients are rapidly enforced. The schedule generation is guided by functions derived from a set of thermal equations. The experimental results demonstrate the efficiency of the proposed methods

    Thermal Issues in Testing of Advanced Systems on Chip

    No full text
    Many cutting-edge computer and electronic products are powered by advanced Systems-on-Chip (SoC). Advanced SoCs encompass superb performance together with large number of functions. This is achieved by efficient integration of huge number of transistors. Such very large scale integration is enabled by a core-based design paradigm as well as deep-submicron and 3D-stacked-IC technologies. These technologies are susceptible to reliability and testing complications caused by thermal issues. Three crucial thermal issues related to temperature variations, temperature gradients, and temperature cycling are addressed in this thesis. Existing test scheduling techniques rely on temperature simulations to generate schedules that meet thermal constraints such as overheating prevention. The difference between the simulated temperatures and the actual temperatures is called temperature error. This error, for past technologies, is negligible. However, advanced SoCs experience large errors due to large process variations. Such large errors have costly consequences, such as overheating, and must be taken care of. This thesis presents an adaptive approach to generate test schedules that handle such temperature errors. Advanced SoCs manufactured as 3D stacked ICs experience large temperature gradients. Temperature gradients accelerate certain early-life defect mechanisms. These mechanisms can be artificially accelerated using gradient-based, burn-in like, operations so that the defects are detected before shipping. Moreover, temperature gradients exacerbate some delay-related defects. In order to detect such defects, testing must be performed when appropriate temperature-gradients are enforced. A schedule-based technique that enforces the temperature-gradients for burn-in like operations is proposed in this thesis. This technique is further developed to support testing for delay-related defects while appropriate gradients are enforced. The last thermal issue addressed by this thesis is related to temperature cycling. Temperature cycling test procedures are usually applied to safety-critical applications to detect cycling-related early-life failures. Such failures affect advanced SoCs, particularly through-silicon-via structures in 3D-stacked-ICs. An efficient schedule-based cycling-test technique that combines cycling acceleration with testing is proposed in this thesis. The proposed technique fits into existing 3D testing procedures and does not require temperature chambers. Therefore, the overall cycling acceleration and testing cost can be drastically reduced. All the proposed techniques have been implemented and evaluated with extensive experiments based on ITC’02 benchmarks as well as a number of 3D stacked ICs. Experiments show that the proposed techniques work effectively and reduce the costs, in particular the costs related to addressing thermal issues and early-life failures. We have also developed a fast temperature simulation technique based on a closed-form solution for the temperature equations. Experiments demonstrate that the proposed simulation technique reduces the schedule generation time by more than half

    Coupled Effect of Expansive Agent and Curing on Mechanical and Shrinkage Properties of Fiber-Reinforced Eco-Crete

    No full text
    This study evaluates the effectiveness of various shrinkage mitigating strategies on the properties of economical and ecological concrete (referred to here as Eco-Crete) made with a low binder content and 55% substitution of cement with fly ash and slag cement. Shrinkage mitigating strategies were included the use of Type G expansive agent (EA), saturated lightweight sand (LWS) for internal curing, and 0.5% micro-macro steel fibers. The coupled effect of these materials along with external moist curing (MC) of 1 and 14 days on mechanical and shrinkage properties was investigated. Eight plain and eight fiber-reinforced Eco-Crete mixtures were tested for compressive strength, flexural strength, drying shrinkage, and restrained expansion. Induced stress resulting from the restrained expansion of the Eco-Crete mixtures was determined, and a multiple regression model was developed to estimate the internally induced stress. MC, EA content, fiber volume, and coupled effect of EA-fiber were found to be significant in enhancing the induced stress. The Eco-Crete mixtures including 10% EA and 14 days of MC exhibited the maximum initial expansion and minimum shrinkage in both shrinkage and restrained expansion length change experiments. The coupled effect of EA and fiber reduced 112-d shrinkage and restrained expansion length change by up to 26% and 54%, respectively, compared to the system made with EA, LWS, and fiber. The highest induced stress and flexural strength of 25 kPa and 6.2 MPa, respectively, were obtained by the mixture made with 10% EA and 0.5% fiber

    A Test-Ordering Based Temperature-Cycling Acceleration Technique for 3D Stacked ICs

    No full text
    n a modern three-dimensional integrated circuit (3D IC), vertically stacked dies are interconnected using through silicon vias. 3D ICs are subject to undesirable temperature-cycling phenomena such as through silicon via protrusion as well as void formation and growth. These cycling effects that occur during early life result in opens, resistive opens, and stress induced carrier mobility reduction. Consequently these early-life failures lead to products that fail shortly after the start of their use. Artificially-accelerated temperature cycling, before the manufacturing test, helps to detect such early-life failures that are otherwise undetectable. A test-ordering based temperature-cycling acceleration technique is introduced in this paper that integrates a temperature-cycling acceleration procedure with pre-, mid-, and post-bond tests for 3D ICs. Moreover, it reduces the need for costly temperature chamber based temperature-cycling acceleration methods. All these result in a reduction in the overall test costs. The proposed method is a test-ordering and schedule based solution that enforces the required temperature cycling effect and simultaneously performs the tests whenever appropriate. Experimental results demonstrate the efficiency of the proposed technique

    Temperature-Gradient-Based Burn-In and Test Scheduling for 3-D Stacked ICs

    No full text
    Large temperature gradients exacerbate various types of defects including early-life failures and delay faults. Efficient detection of these defects requires that burn-in and test for delay faults, respectively, are performed when temperature gradients with proper magnitudes are enforced on an Integrated Circuit (IC). This issue is much more important for 3-D stacked ICs (3-D SICs) compared with 2-D ICs because of the larger temperature gradients in 3-D SICs. In this paper, two methods to efficiently enforce the specified temperature gradients on the IC, for burn-in and delay-fault test, are proposed. The specified temperature gradients are enforced by applying high-power stimuli to the cores of the IC under test through the test access mechanism. Therefore, no external heating mechanism is required. The tests, high power stimuli, and cooling intervals are scheduled together based on temperature simulations so that the desired temperature gradients are rapidly enforced. The schedule generation is guided by functions derived from a set of thermal equations. The experimental results demonstrate the efficiency of the proposed methods

    Process-variation and Temperature Aware SoC Test Scheduling Technique

    No full text
    High temperature and process variation are undesirable phenomena affecting modern Systems-on-Chip (SoC). High temperature is a well-known issue, in particular during test, and should be taken care of in the test process. Modern SoCs are affected by large process variation and therefore experience large and time-variant temperature deviations. A traditional test schedule which ignores these deviations will be suboptimal in terms of speed or thermal-safety. This paper presents an adaptive test scheduling method which acts in response to the temperature deviations in order to improve the test speed and thermal safety. The method consists of an offline phase and an online phase. In the offline phase a schedule tree is constructed and in the online phase the appropriate path in the schedule tree is traversed based on temperature sensor readings. The proposed technique is designed to keep the online phase very simple by shifting the complexity into the offline phase. In order to efficiently produce high-quality schedules, an optimization heuristic which utilizes a dedicated thermal simulation is developed. Experiments are performed on a number of SoCs including the ITC'02 benchmarks and the experimental results demonstrate that the proposed technique significantly improves the cost of the test in comparison with the best existing test scheduling method
    corecore